Search results for " infrared spectroscopy"

showing 10 items of 438 documents

Amorphous ultra-wide bandgap ZnOx thin films deposited at cryogenic temperatures

2020

Crystalline wurtzite zinc oxide (w-ZnO) can be used as a wide band gap semiconductor for light emitting devices and for transparent or high temperature electronics. The use of amorphous zinc oxide (a-ZnO) can be an advantage in these applications. In this paper we report on X-ray amorphous a-ZnOx thin films (~500 nm) deposited at cryogenic temperatures by reactive magnetron sputtering. The substrates were cooled by a nitrogen flow through the copper substrate holder during the deposition. The films were characterized by X-ray diffraction (XRD), Raman, infrared, UV-Vis-NIR spectroscopies, and ellipsometry. The a-ZnOx films on glass and Ti substrates were obtained at the substrate holder temp…

010302 applied physicsCondensed Matter - Materials ScienceMaterials sciencebusiness.industryBand gapGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesAmorphous solidsymbols.namesakeSputteringEllipsometry0103 physical sciencessymbolsOptoelectronicsFourier transform infrared spectroscopyThin film0210 nano-technologybusinessRaman spectroscopy
researchProduct

Superparamagnetic recoverable flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposite: synthesis, characterization, mechanism and kinetic s…

2019

In the present research study, a simple method was developed for the synthesis of three-dimensional flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposites. The X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscope, vibrating sample magnetometer, dynamic laser scattering analyzer and UV–Vis diffuse reflection spectroscopy were employed for the characterization of structure, purity and morphology of the resultant samples. The degradation of indigo carmine as a model of organic dye pollutant is applied for photo-catalytic activity. The parameters which are affecting the efficiency of various parameters, such as;…

010302 applied physicsDiffractionNanocompositeMaterials scienceKineticsAnalytical chemistryElectronCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsflowerlike Fe3O4@Bi2O3 core-shell g-C3N4 superparamagnetic photocatalysischemistry.chemical_compoundIndigo carminechemistryTransmission electron microscopySettore CHIM/03 - Chimica Generale E Inorganica0103 physical sciencesSettore CHIM/07 - Fondamenti Chimici Delle TecnologieElectrical and Electronic EngineeringFourier transform infrared spectroscopySuperparamagnetism
researchProduct

Nonlinear optical response of bulk ZnO crystals with different content of intrinsic defects

2018

Abstract The nonlinear optical (NLO) properties of native defect-rich ZnO single crystals were studied in details within the excitation of the continuous wave (CW) and pulsed laser radiation at 532 nm (2.33 eV). Analysis of the experimental data of optical elastic scattering, Fourier transform infrared (FTIR), near infrared–visible–ultraviolet (NIR–Vis–UV) spectra recorded in reflection and absorption modes, and data of photoluminescence (PL) spectroscopy confirmed the contribution of both intrinsic defects and their clusters, being determined before by neutron diffraction and XRD analysis. It was shown that the high sensitivity of the NLO diagnostics via self-action of a laser beam is due …

010302 applied physicsElastic scatteringMaterials sciencePhotoluminescenceInfraredOrganic ChemistryNeutron diffraction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsAtomic and Molecular Physics and OpticsLight scatteringElectronic Optical and Magnetic MaterialsInorganic ChemistryWavelength0103 physical sciencesElectrical and Electronic EngineeringPhysical and Theoretical ChemistryFourier transform infrared spectroscopy0210 nano-technologySpectroscopySpectroscopyOptical Materials
researchProduct

FTIR Analysis of Electron Irradiated Single and Multilayer Si<sub>3</sub>N<sub>4</sub> Coatings

2018

Silicon nitride (Si3N4) due to its good mechanical and electrical properties is a promising material for wide range of applications, including exploitation under action of ionizing radiation. For estimating the changes of chemical bonds in silicon nitride nanolayers under action of ionizing radiation single and multi-layer silicon nitride nanolayered coatings on prepared Si subtrate were investigated by means of Fourier transform infrared spectrometry. Three main groups of signals were identified in both types of nanolayers, at 510 and 820 cm-1 and group of broad signals at 1000-1200 cm-1. Irradiation with accelerated electrons up to absorbed doses 36 MGy causes minor changes of signal inte…

010302 applied physicsMaterials scienceMechanical Engineering02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesMechanics of Materials0103 physical sciencesGeneral Materials ScienceIrradiationFourier transform infrared spectroscopy0210 nano-technologyNuclear chemistryKey Engineering Materials
researchProduct

Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs

2019

Abstract Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs was demonstrated in α- and β-TCP polymorphs prepared by wet precipitation method under identical conditions and annealed at 700 °C. Calcium phosphates with Mn doping level in the range from 1 to 5 mol% were studied and the formation of desired polymorph was controlled by varying Mn content in as-prepared precipitates. It was found that increasing Mn content resulted in the formation of β-TCP, while α-TCP was obtained with low Mn doping level, whereas a mixture of two polymorphs was obtained for intermediate Mn concentrations. Moreover, doping with Mn ions allowed the synthesis of β-TCP at …

010302 applied physicsMaterials sciencePrecipitation (chemistry)Scanning electron microscopeDopingInfrared spectroscopy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonlaw.inventionlaw0103 physical sciencesMaterials ChemistryCeramics and CompositesFourier transform infrared spectroscopyInductively coupled plasma0210 nano-technologyElectron paramagnetic resonanceNuclear chemistryJournal of the European Ceramic Society
researchProduct

Gel combustion synthesis and magnetic properties of CoFe2O4, ZnFe2O4, and MgFe2O4 using 6-aminohexanoic acid as a new fuel

2020

Abstract For the first time, 6-aminohexanoic acid is used as an alternative fuel in the synthesis of the spinel ferrites with compositions CoFe2O4, ZnFe2O4 and MgFe2O4 using gel combustion synthesis with different oxidizer-to-fuel (O/F) ratios. The gel precursors were studied by differential thermal analysis and thermogravimetry (DTA/TG), which showed that the ignition temperature depends on the gel precursor, being around 230 °C, 130 °C and 275 °C for CoFe2O4, ZnFe2O4, and MgFe2O4, respectively. These results showed than the 6-aminohexanoic acid has an ignition temperature lower than the urea and the citric acid when were used in the synthesis of the spinel ferrites by gel combustion. More…

010302 applied physicsMaterials scienceSpinelAnalytical chemistryAutoignition temperature02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyCondensed Matter PhysicsCombustion01 natural sciencesElectronic Optical and Magnetic MaterialsAdiabatic flame temperatureThermogravimetryZinc ferriteDifferential thermal analysis0103 physical sciencesengineeringFourier transform infrared spectroscopy0210 nano-technologyJournal of Magnetism and Magnetic Materials
researchProduct

Heterogeneous Interactions between Gas-Phase Pyruvic Acid and Hydroxylated Silica Surfaces: A Combined Experimental and Theoretical Study

2019

The adsorption of gas-phase pyruvic acid (CH3COCOOH) on hydroxylated silica particles has been investigated at 296 K using transmission Fourier transform infrared (FTIR) spectroscopy and theoretical simulations. Under dry conditions (<1% relative humidity, RH), both the trans-cis (Tc) and trans-trans (Tt) pyruvic acid conformers are observed on the surface as well as the (hydrogen bonded) pyruvic acid dimer. The detailed surface interactions were further understood through ab initio molecular dynamics simulations. Under higher relative humidity conditions (above 10% RH), adsorbed water competes for surface adsorption sites. Adsorbed water is also observed to change the relative populations …

010304 chemical physicsHydrogenChemistryDimerInorganic chemistrychemistry.chemical_element010402 general chemistry01 natural sciences0104 chemical scienceschemistry.chemical_compoundAdsorption13. Climate action0103 physical sciencesRelative humidityPyruvic acid[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Physical and Theoretical ChemistryFourier transform infrared spectroscopySpectroscopyConformational isomerismComputingMilieux_MISCELLANEOUS
researchProduct

Matrix isolation and quantum chemical studies on the H2O2–SO2complex

2004

Complexation and photochemical reactions of hydrogen peroxide and sulfur dioxide have been studied in solid Ar, Kr and Xe. Complexes between H2O2 and SO2 are characterized using Fourier transform infrared spectroscopy and ab initio calculations. In solid Ar, the H2O2–SO2 complex absorptions are found at wavenumbers of 3572.8, 3518.7, 3511.2, 3504.3, 1340.3, 1280.2 and 1149.9 cm−1. In Kr and Xe matrices, the bonded OH stretching frequencies deviate from the values in Ar, and we propose that the matrix surrounding influences the structure of the H2O2–SO2 complex. UV photolysis of the H2O2–SO2 was also studied in solid Ar, Kr and Xe. This photolysis produces mainly a complex between sulfur tri…

010304 chemical physicsPhotodissociationMatrix isolationGeneral Physics and Astronomy010402 general chemistry7. Clean energy01 natural sciences0104 chemical scienceschemistry.chemical_compoundMatrix (mathematics)chemistryComputational chemistryAb initio quantum chemistry methods0103 physical sciencesSulfur trioxidePhysical chemistryPhysical and Theoretical ChemistryFourier transform infrared spectroscopyHydrogen peroxideSulfur dioxidePhys. Chem. Chem. Phys.
researchProduct

Corrosion inhibition performance of a structurally well-defined 1,2,3-triazole derivative on mild steel-hydrochloric acid interface

2021

Abstract In the present work, a new 1,4-disubstituted-1,2,3-triazole product, named 4-[1-(4-methoxy-phenyl)-1H-[1,2,3]triazol-4-ylmethyl]-morpholine (MPTM) was successfully synthesized under click chemistry regime. The structure of the new compound that has a rigid triazole moiety and a flexible morpholine ligand has been characterized using 1H NMR, 13C NMR, HRMS, and FTIR spectroscopy. Its inhibition performance for mild steel in acidic medium 1 M HCl has been studied by utilizing a combination of experimental, spectroscopic and computational methods. The electrochemical characterization was carried out by a gravimetric study, electrochemical impedance spectroscopy (EIS), and potentiodynam…

010405 organic chemistryOrganic ChemistryLangmuir adsorption modelCarbon-13 NMR010402 general chemistry01 natural sciences0104 chemical sciencesAnalytical ChemistryDielectric spectroscopyInorganic Chemistrysymbols.namesakechemistry.chemical_compoundAdsorptionchemistryMorpholinesymbolsProton NMRFourier transform infrared spectroscopySpectroscopyDerivative (chemistry)Nuclear chemistryJournal of Molecular Structure
researchProduct

High-resolution spectroscopy and analysis of the nu3/2nu4 dyad of CF4

2011

International audience; CF4 is a strong greenhouse gas of both anthropogenic and natural origin [D.R. Worton et al., Environ. Sci. Technol. 41, 2184 (2007)]. However, high-resolution infrared spectroscopy of this molecule has received only a limited interest up to now. Until very recently, the public databases only contained cross-sections for this species, but no detailed line list. We reinvestigate here the strongly absorbing ν3 region around 7.8 μm. New Fourier transform infrared (FTIR) spectra up to a maximal resolution of 0.0025 cm−1 have been recorded: (i) room-temperature spectra in a static cell and (ii) a supersonic expansion jet spectrum at a 23 K estimated temperature. Following …

010504 meteorology & atmospheric sciencesInfraredBiophysicsAnalytical chemistryInfrared spectroscopycarbon tetrafluoride01 natural sciencesSpectral linesymbols.namesake0103 physical sciencesPhysical and Theoretical ChemistryFourier transform infrared spectroscopySpectroscopyMolecular Biologyemi-classical analysis0105 earth and related environmental sciences010304 chemical physicsChemistryResolution (electron density)Condensed Matter Physics[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Fourier transform13. Climate actiongreenhouse gassymbolsinfrared absorption[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]tensorial formalismMicrowave
researchProduct